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Abstract. An isomorphism between EUCLIDean triangles and HAMILTON'S 
quaternions is derived. Two parameters, c and h, appear in this isomorphism and we 
will interpret them physically as velocity of light and PLANCK'S constant. The 
parameters c and h are constrained by the equation ch = i, and this leads to the need to 
introduce imaginary physical metrical units. 
 
 
 
 
1. Triangles and quaternions 
 
 
Quaternions, elements of an algebraic skew field, the HAMILTONian form of complex 
numbers are traditionally taken as points of a 4-dimensional space, the four basic 
vectors 1, i, j, k of this space possess the multiplication structure 
 

. 1 i j k 
1 1 i j k 
i i –1 k –j 
j j –k –1 i 
k k j –i –1 

 
(details in for example [8]). 
 
HAMILTON had much trouble to construct his numbers for he could not find a point 
(or vector) picture of his number elements in the 3-dimensional space of our visual 
perception. Such a model does not exist. But one gets a 3-dimensional picture of our 
number field if we perceive its elements not as points or vectors but as EUCLIDean 
triangles. 
 
In the following Sections we will find an isomorphism between quaternions and  
3-dimensional triangles. 



Let V be the 3-dimensional EUCLIDean vector-space. Now we consider pairs (a1, a2) of 
vectors. If we take a fixed point M of 3-dimensional space, we can identify (a1, a2) with 
the triangle (M, M + a1, M + a2). (In this sense, the triangles (A, B, C) and (A, C, B) are 
different of course.) Because of this identification, we will often call (a1, a2) a triangle. 
We, will call { }( 0VVT − )×=  the set of fundamental triangles. 
 
Definition 1.1.  
Let (a1, a2), (b1, b2) ∈ T; the pairs (a1, a2) and (b1, b2) are equivalent, if 
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(a1, a2) is the inner-,  the outer-product of the vectors a21 aa × 1 and a2. 
 
In symbols: 
 (a1,a2) ~ (b1,b2) 
 
(This is of course an equivalence relation, so we have T/~ as the set of all classes of 
equivalent vector pairs.) We can transfer this definition to our interpretation of the 
vector pair by a triangle. It is easy to verify from equation (1.1) that two triangles are 
equivalent, if and only if they are parallel and similar. 
 
In other words: If we take the triangle (al, a2), rotate it around the axis  yielding 
the triangle  and stretch it by a factor λ ≠ 0, then 

21 aa ×
),( 21 aa ′′ ),(~),( 2121 aaaa ′′ λλ . We 

should as well note that all triangles (0, a2) are equivalent as well.  
 
We will now need a pair (c, h) of complex numbers with 
 
 ch = i        (1.2) 
 
We call these constants c and h the fundamental metrical constants. Of special interest 
are the cases (c, h) = (i, 1) and (c, h) = (1, i) as we shall see later, but in fact none of our 
proofs will be based on this special values. 
 
We are now going to identify the factor structure T/~ with the quaternions by making 
use of the common mixed scalar-vector representation of quaternions: 
 
Definition 1. 2.  
Let (a1, a2), (b1, b2) ∈ T; we set 
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Then (α|a) is the correspondent quaternion number. We call α the scalar part and 
a the vector part of the quaternion. 



Again it is obvious that this assignment is consistent with our equivalence relation 
above, so we can assign one unique quaternion number to every equivalence class 
[(a1,a2)]~ of T/~. Vice versa we can construct a pair (a1, a2) for every quaternion (α|a), 
so that (1.3) holds (take a2 to be a unit vector orthogonal to a, the rest is simple vector 
arithmetic). So we have: 
 
Theorem 1.3. 
There is a one-to-one correspondence between (a subset of complex) quaternions and 
T/~, such that for every [(a1,a2)]~ ∈ T/~ equations (1.3) hold. 
 
Remarks. 
 

• For simplicity we will write [(a1,a2)] for [(a1,a2)]~. 
 

• As there are no constraints on c and h besides (1.2), the vector part of the 
quaternion will usually be a complex vector. It should also be noted that the 
quaternion corresponding to the fundamental triangle (a1, a2) is zero if and only 
if a1 = 0; we will denote the equivalence class of these triangles with [(0,e1)]. 

 
• Only with the special norm (c, h) = (i, 1) we come back to the usual description 

of HAMILTONian quaternions. But our results do not depend on this special 
assumption. We describe the HAMILTONian skew field and its elements in a 
more general form. Since our triangles – c and h only being restricted by (1.2) – 
are elements of a skew field isomorphic to HAMILTONian quaternions, we will 
use the term 'quaternion' for the triangle numbers and their algebraic description 
without confusion. 

 
• I call (c, h) = (1, i) the hyperbolic state of HAMILTONian quaternions (cf. [5]). 

 
 
 
 



2. Triangle composition and quaternionic product 
 
 
We, will define an operation on our set T/~ and prove that this operation corresponds to 
the quaternionic product. 
 
Given two equivalence classes of triangles [(a1,a2)] and [(b1,b2)], we will define the 
composition of these triangles as follows: 
 
(a) If a1 ≠ 0 and b1 ≠ 0, then we can find triangles ),( 21 aa ′′ and )b,b( 21 ′′ with 

),(~),( 2121 aaaa ′′  and ),(~),( 2121 bbbb ′′ and 12 ba ′=  (this is quite easy to see: 
Clearly the planes of the two triangles (a1,a2) and (b1,b2) must intersect if not be 
identical. So we only have to rotate the two triangles within their respective plane 
and line up a2 and b1 with the intersection line of the two planes and apply a proper 
stretching factor). Then we define [(x1,x2)] with (x1,x2):=  to be the 
composition of [(a

),( 12 ba ′

1,a2)] and [(b1,b2)]. (Our assumptions assure x1≠0). 
 
(b) If a1 = 0 or b1 = 0 then we define [(0, e1)] to be the composition. 
 
 
First of all we will have to see that the composition is well defined. This is obvious in 
case (b), only case (a) might require some reflection to see that all different values of 
(x1,x2) left open in the definition lead to the same equivalence class [(x1,x2)] (the triangle 
(x1,x2) as defined above is uniquely determined except for a stretching factor, and – if 
the triangles (a1,a2) and (b1,b2) lie within the same plane – a rotation in this plane; both 
stretching and rotation in this plane lead to the same equivalence class). 
 
We will now show that the composition of [(a1,a2)] and [(b1,b2)] corresponds to the 
multiplication of the corresponding quaternions (α|a) and (β|b). In case (b) there is 
nothing to prove, so we need only consider case (a): If we have A = (α|a) and B = (β|b) 
with 
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then we shall see, that the product ( )xBAX ξ=⋅=  is described by 
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Proof. We will make use of a slightly modified version of the well-known formula for 
the product of two quaternions, i.e.: 
 

 2

)(
c
ab

+= αβξ
 

 bhaabx ×++= βα  
 
(In the case c = i, h = 1 we find the usual version of this formula, cf. [7]) 
 
With a little vector arithmetic and (1.2) we find for the scalar part ξ: 
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For the vector part x, we set 
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(where (a1a2a3) denotes the inner-product of the vectors a1 and ), we have to 
show: x = z. We find: 

32 aa ×

 

 ,01 =xa  ,03 =xa  2
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It follows: 31 aaz ×= λ . Assuming, a1, a2 and a3 are linearly independent, we find 
noting that (a1a2a3) ≠ 0: 
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If a1, a2 and a3 are linearly dependent, we may assume that 
 
 32112 aaa λλ +=  
 
In this case (a1a2a3) = 0 and we have: 
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This completes our proof which is summarized in the following theorem: 
 
 
Theorem 2.1. Let [(a1,a2)] and [(b1,b2)] be equivalence classes of triangles, A and B the 
corresponding quaternions, respectively; let [(x1,x2)] be the composition of [(a1,a2)] and 
[(b1,b2)]. Then the quaternion BA ⋅ corresponds to the triangle class [(x1,x2)] 
 
 
 
 
Remarks. The correspondence between composition of triangles and multiplication of 
quaternions has some amazing properties: 
 
 
1. The triangle class [(a,a)] with a ≠ 0 represents unity, which can be seen by 

considering the effect of composition (or by equations (1.3)), (0,a) is the zero 
element. 

 
2. If [(a1,a2)] with a1 ≠ 0 is an equivalence class of triangles and A the corresponding 

quaternion number, then the inverse A–1 is represented by [(a2,a1)]; furthermore we 
see that the quaternion corresponding to [(a1,a2)] is invertible if and only if a1 ≠ 0 
(that is, every quaternion except for the zero element is invertible). 

 



3. The correspondence allows an easy proof of associativity of quaternion product: The 
two possible orders of composition of the three triangles (a1,a2), (a2,a3) and (a3,a4) 
obviously both lead to (a1,a4). 

 
4. A similar construction (with less spectacular results) may be used to express addition 

of quaternions in terms of triangles: We can always transform the triangles (a1,a2) 
and (b1, b2) into the equivalent triangles ),( 1 ca′  and ),( 1 cb′  and then define the sum to 
be . ),( 11 cba ′+′

 
5. Composition of triangle classes is commutative if the triangle classes occupy the 

same plane ε. This leads to a commutative subset of quaternions isomorphic to the 
set of complex numbers. Moreover, if we take ε to be a fixed unit vector in ε then 
every quaternion of this set can be described as the equivalence class [(a,ε)] with a 
being a vector in ε; if we now identify the vector a with this equivalence class then 
we see that this naturally leads to the GAUSS plane of complex numbers. 

 
6. Considering composition of triangles, we can easily see that our structure has no zero 

divisors. 
 
7. Didactic aspects of representing numbers by triangles were discussed in [7]. 
 
 
Quaternions are traditionally classified as 'real' or 'complex' if the 4-dimensional vector 
– traditionally used to construct quaternions – has real or complex components.  
HAMILTONian quaternions are usually identified with 'real' quaternions. From the 
triangle model we get the HAMILTONian quaternions with the two complementary 
states (c,h) = (i,1) and (c, h) = (1,i). The existence of the non-classical, hyperbolic state 
(c,h) = (1,i) raises the question: Is the above classification useful if the HAMILTONian 
quaternions possess non-real components in the hyperbolic state? 
 
Some theoretical papers construct a relativistic quantum theory in using 'complex' 
quaternions (cf. [1, 2, 9, 10]), but they do not realize that HAMILTONian quaternions 
in its hyperbolic metrical representation do produce these results. 
 
Some physical papers (cf. [3, 4]) discuss the geometrical meaning of quaternions, but do 
not realize that HAMILTONian quaternions are EUCLIDean triangles in the natural 
space of our perception. 
 
Using the triangle model and our algebraic, complementary description of the 
quaternionic skew field, we get a 3-dimensional picture of MINKOWSKI'S space-time 
(cf. [6]) and a better connection between relativity and quantum mechanics. 
 



3. Physical interpretations 
 
We, will now try to show how our interpretation of quaternions can be applied in 
physics. 
 
 
3.1. Lorentz transformation 
 
If we assume (c,h) = (1,i), then we can deduce the formalism of special relativity as 
follows: 
 
A space-time event (or kinematical event) is described by 
 
 xtxtQ +== )(  
 
when the real part t describes the time, and the vector part x describes the location. A 
material event (or dynamical event) is described by 
 
 WQQQ ⋅=′→  and WPPP ⋅=′→  
 
within 1=⋅WW . 
 
Special relativity possesses two basic invariants, namely 
 
 proper time QQ ⋅=:τ  
and 
 rest mass PP ⋅=:µ  
 
Invariance of proper time and rest mass in the LORENTZ group follows immediately, 
for instance 
 
 ( ) ( ) ( ) ( ) ( ) QQQWWQWQWQWQWQQQ ⋅=⋅⋅⋅=⋅⋅⋅=⋅⋅⋅=′⋅′ . 
 
The skew field formalism produces a very compact description of special relativity. We 
get the LORENTZ transformation in the usual form if we separate in real and vector 
part: 
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Noting that 1=⋅WW  we get the formulas for the Kinematical LORENTZ 
transformations: 
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In the same way we can derive Dynamic LORENTZ transformation: 
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Our form of special relativity is possible only if we. accept imaginary metrical units for 
space vectors in space-time. This formalism also shows another difference to the 
common theory: The number h, representing PLANCK'S constant in microphysics, does 
not appear explicitly in the EINSTEINean theory. Our formalism reveals the terms 
 
  and vhx× vhp ×  
 
in the LORENTZ transformation (with a pure number h). 
 
The common theories of relativity and quantum mechanics do not suppose this 
fundamental connection between velocity of light c and wirkungsquantum h as 
described by our fundamental metrical equation ch = i. A better foundation and 
correlation of both relativity and quantum mechanics is achieved if we choose a 
physical metrical system based on ch = i. We should also note that in classical quantum 
theory the wirkungsquantum h is strongly associated with i = 1− . 
 
 
3.2. Dynamic events and DE BROGLIE waves 
 
We gave a first physical interpretation of quaternions by writing LORENTZ 
transformations as functions in the skew field. We used quaternions to describe points 

)( xtQ =  in space-time and impulses )( pmP =  dynamically. We will now continue 
this interpretation. Let 
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We now interpret m* as the scalar energy of a motion, 
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as quaternionic energy, 
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as the quaternionic impulse. 
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is the mass of the moved object and 
 
  *: hpp =
 
is the vector K. p* is the DE BROGLIE wave vector of this motion. So P as defined 
above has the form 
 
  pmP +=
 
Since 
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one may call 
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the wave quaternion. 

 
h

m*

:=ν  

 
is the frequency of the wave, so that the wave quaternion takes the form 
 

 *2* : p
c
vP += . 

 
The connection between the three levels P*, P and P* ('energy'-, 'mass'- and 'frequency'-
level) is 
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expressed in its components: 
 
  hvmcm == 2*

 , *hpp =
 
leading to the basic energy equations 



 
  EINSTEIN 2* mcm =
  DE BROGLIE hvm =*

 
and the DE BROGLIE equation  
 
  *hpp =
 
connecting the wave vector p* and the vector impulse p. The natural reproduction of 
these classical physical equations support our hypothesis that the fundamental metrical 
parameters can be interpreted as velocity of light and PLANCK constant h. 
 
 
3.3. A modified metrical system 
 
Starting with the pure mathematical structure of quaternions we found several 
arguments for a physical interpretation of the fundamental metrical numbers c and h. 
 
Now we will turn around and take the opposite way starting with a classical equation 
which expresses the connection of c, h with the electronic charge ε. We write the 
SOMMERFELD equation 
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and conclude: All classical physical metrical systems assume 
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This axiom 21 δδ =  is not the only possible one. Our hypothesis is: It is more natural to 
assume 
 i=1δ   and 12 =δ  
 
This leads to 
 1±=ε  
 



for the metrical number of the elementary charge, and to the fundamental metric 
equation for 
 the velocity of light  cc α=:  

 the wirkungsquantum 
π2

: hh = . 

 
This metrical system transforms the SOMMERFELD equation in ε ± 1 together with 
our fundamental metrical equation 
 
 ihc =⋅ . 
 
All our results remain valid if we substitute (c, h) by ),( hc , as the only difference is a 
scalar factor. This modified metrical system opens the way to a quaternionic description 
of physics, with a better connection between relativity and quantum mechanics. 
 
Our quaternionic triangles reduce the 4-dimensional world of space-time to a world of 
EUCLIDean triangles situated in the natural 3-dimensional space of our visual 
perception. 
 
If we use the metrical system ),( hc  = (1,i) for describing such space-time triangles, this 
hyperbolic quaternionic description of nature leads to the natural norms 
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for elementary charge, wirkungsquantum and velocity of light. 
 

On this way we may identify the elementary spin h
2
1  of a particle with the EUCLIDean 

angle sum of every HAMILTONian quaternion. 
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